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Abstract. Two approaches to accelerating the method of com-
plete linearization for calculating NLTE model stellar atmo-
spheres are suggested. The first one, the so-called Kantorovich
variant of the Newton—Raphson method, consists of keeping the
Jacobi matrix of the system fixed, which allows us to calculate the
costly matrix inversions only a few times and then keep them
fixed during the subsequent computations. The second method is
an application of the Ng acceleration. Both methods are extre-
mely easy to implement with any model atmosphere code based
on complete linearization. It is demonstrated that both methods,
and especially their combination, yield a rapidly and globally
convergent algorithm, which takes 2 to 5 times less computer
time, depending on the model at hand and the required accuracy,
than the ordinary complete linearization. Generally, the time
gain is more significant for more complicated models. The
methods were tested for a broad range of atmospheric para-
meters (T¢= 10000, 25000 and 50000 K), and in all cases they
exhibited similar behavior. Ng acceleration applied on the Kan-
torovich variant thus offers a significant improvement of
the standard complete-linearization method, and may now be
used for calculating relatively involved NLTE model stellar
atmospheres.

Key words: radiative transfer — stars: atmospheres — stars: early-
type

1. Introduction

The method of complete linearization, first introduced by Auer
& Mihalas (1969), represents a foundation on which most of the
progress in stellar atmospheric modeling made during the last
two decades was based. Until recently, this was the only practical
method for calculating reliable non-local-thermodynamic-equi-
librium (NLTE) model atmospheres for hot (7. > 10000 K)
stars. As has been amply demonstrated, complete linearization is
a very powerful method, yet it possesses a serious drawback: only
a relatively small number of opacity sources (lines) and simple
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atomic models can be treated, due to the cubic increase of
computer time as the number of unknowns increases.

Recently, two powerful methods have been developed which
offer a substantial reduction of computer time with respect to the
original complete linearization, which therefore allows one to
treat more realistic model atoms in NLTE, including the effects
of many lines and continua. One method, called the multi-
frequency/multi-gray algorithm, was developed by Anderson
(1985, 1987). The method uses an ingenious rearranging of indi-
vidual frequency points into a small set of frequency blocks.
Mathematically, it is still based on complete linearization. The
other method is an application of the accelerated lambda iter-
ation (ALI) technique, developed by Werner and collaborators
(Werner 1986, 1987, 1989; Dreizler & Werner 1991). Model
atmospheres taking into account hundreds of atomic energy
levels and hundreds to thousands of transitions are now becom-
ing possible.

Despite these new developments, the standard complete line-
arization remains still a viable method. Generally, while the ALI
methods require much less computational effort per iteration, the
number of iterations needed is typically rather large, of the order
of tens to even hundreds. In contrast, complete linearization,
which requires many more operations per iteration, usually
exhibits much faster convergence — cases where as few as 5 iter-
ations produce a reasonably converged model are not excep-
tional. Moreover, convergence with complete linearization is
global, if it converges at all. Another conceptual advantage of
complete linearization is the ease of coding it and generalizing it
to more complex physical situations (for instance, treating partial
frequency redistribution in line transitions does not introduce
any particular complications, in contrast to the ALI methods).
Finally, from the practical view, there already exist several user-
friendly and well-documented computer programs based on
complete linearization (Mihalas et al. 1975; Hubeny 1988), which
are currently being used worldwide for various modeling
purposes.

For all these reasons it is highly desirable to seek out modifi-
cations and improvements of complete linearization which would
preserve its favorable properties, particularly the rapid and glo-
bal convergence, while reducing as much as possible the com-
putational effort per iteration and the number of iterations
required. It is the aim of the present paper to suggest two such
improvements, and to demonstrate that they indeed lead to
a dramatic reduction of computer time in practically all cases of
hot star atmospheric modeling.
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2. The formulation
2.1. Ordinary complete linearization

The problem of constructing a model atmosphere consists in
solving simultaneously the set of structural equations describing
the physical state of a stellar atmosphere. We limit ourselves here
to the so-called classical stellar atmosphere problem, although
the subsequent development may be applied to more general
situations. Assuming a plane-parallel, horizontally homogeneous
atmosphere in hydrostatic, radiative, and statistical equilibrium,
the basic set of equations to be solved consists of the radiative
transfer equations for a selected set of frequency points, the
hydrostatic equilibrium equation, the radiative equilibrium
equation, and the set of statistical equilibrium equations for
chosen atomic energy levels. The equations are discretized in
frequency and depth, which yields a set of highly coupled, non-
linear algebraic equations.

Within these approximations, the physical state of an atmo-
sphere may then be fully described by a set of vectors ¥, for every
depth point d, d=1, ..., ND, ND being the total number of
depth points. The (column) vector ¥, is given by

‘//d={‘]1,‘ < dne N, Tong, ny, .

Snac T (1)
where J; is the mean intensity of radiation in the ith frequency
point, N the total particle number density, T the temperature,
n. the electron density, and n; the atomic level populations; we
have omitted the depth subscript d. The dimension of vector i, is
NN, NN=NF +NL + 3, NF is the number of frequency points,
and NL number of atomic energy levels. Superscript T means the
transposition, and should not be confused with temperature.
Strictly speaking, vector ¥, should contain specific intensities of
radiation, I(v;, u;), (1; being discretized values of the directional
cosines), instead of mean intensities J(v;). However, thanks to the
variable Eddington factor technique, a simplified form [Eq. (1)]
may be used. This point will be further discussed in Sect. 2.2.
The set of structural equations may be written formally as

P(x)=0, 2
where x is a column vector formed from all column vectors ¥4,
x={‘/’}-9 R IIILD}]:

its dimension is therefore NN x ND, and P is a non-linear oper-
ator,

P={P,,...,Pxp}", (3)
and
Pd={Pl"~'9PNFaPNF+1a'~',PNN}T’ (4)

where the first NF equations are the discretized radiative transfer
equations at depth d, the (NF + 1)th equation is the hydrostatic
equilibrium at this depth, and so on.

The original complete linearization is nothing more than the
Newton—Raphson (sometimes also called Newton-Kantorovich)
method of solving Eq. (2), namely

J (x5 = — P(x™) (a)
or, equivalently,
XD g ()= 1 p(x) (5b)

where J is the Jacobi matrix (Jacobian),

oP;

an'

Jij= (6)
Since the system [Eq. (2)] represents a finite difference solution of
at most second-order differential equations (i.c. the Feautrier
form of the transfer equation; see, for example, Mihalas 1978), the
Jacobian J has a particularly simple structure, namely a block-
tridiagonal form, and Eq. (2) is traditionally written (Mihalas
1978) as

— AP S+ B CPOY R =LY, o)

which now also indicates the explicit dependence of the matrices
on the iteration number n. Here A, B, C are NN x NN matrices,
and LY =P,(x™) is the residuum vector (of dimension NN) at
depth d.

Since the Jacobian is of a block-tridiagonal form, its inversion
in Eq. (5) is not performed explicitly (otherwise one would be
faced with the inversion of a matrix typically 10* x 10* even for
simple model atmospheres, which is clearly out of the question
even for the fastest available computers). Instead, Eq. (5) is solved
by applying a block-Gaussian elimination procedure. One first
constructs auxiliary NN x NN matrices D; and vectors v, of
dimension NN by the recurrence relations (here we omit the
superscript n)

Dy=(B;—A4Dy-1)"'Cs, D=B;'Cy,
Va=(Ba—AaDy_1)""(Ly+ Agva-1), vi=Bi'Ly,

(8a)
(8b)
and the solution is found by a “back-substitution”,

WYa=DyoYar1+Vvs, OYnp+1=0. (&)

Each iteration of the complete linearization thus consists of:

(i) setting up matrices 4, B, C, and the r.h.s. vectors L;

(ii) calculating auxiliary matrices D and vectors v, Egs. (8a)
and 8b);

(iii) back-substitution, Eq. (9).

Step (i), which involves ND inversions of (NN x NN)
matrices, plus ND multiplications of two (NN x NN) matrices is
usually the most time-consuming part of the model construc:ion.
(Matrix C has a special structure, so that the multiplication is
much less time-consuming than the case of multiplying two full
matrices.) Step (i) is typically much faster, although for very
involved model atmospheres it may consume an appreciable
fraction of the total time. Steps (iii), which involves only multipli-
cation of a matrix with a vector, is very fast. Since the auxiliary
matrices, D, have to be stored on an external storage medium, the
computer time for this step is usually I/O-dominated.

We stress that besides steps (i)—(iii), one usually has to per-
form a formal solution step, which is basically a set of calcu-
lations between successive linearization iterations whose purpose
is to provide consistent values of radiation intensities and level
populations. To this end, one either performs several lambda
iterations, or, better still, performs several sets of the equivalent-
two-level atom procedures (for details, refer to Hubeny 1988). As
discussed by Hubeny (1981, 1988), this step is often the decisive
one in achieving convergence.

Altogether, the total computer time for the ordinary complete
linearization scales roughly as

Nier X ND x NN3.

Generally, one may reduce the total time either by reducing the
time per iteration, or by reducing the number of iterations needed
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to achieve a certain accuracy, or both. The former possibility is
discussed in the following two sections, while the latter one is
considered in Sect. 2.4.

2.2. Acceleration by reducing the size of matrices

One obvious way of reducing the computer time is to reduce the
size of matrices to be inverted, i.e. to minimize NN as much as
possible. Of course, this may be accomplished by reducing the
complexity of the physical problem, but we exclude this here
since our goal is to develop a method which handles a given
physical problem, of arbitrary complexity, as efficiently as
possible.

The reduction of NN may also be achieved by means of
linearizing the system with respect to fewer quantities than the
actual number of unknowns, either by linearizing only some
appropriately chosen averaged quantities, or by keeping certain
quantities fixed during linearization and recalculating them after
a completed iteration (basically by means of a formal solution of
the appropriate equation). A typical example of the first ap-
proach is the variable-Eddington-factor technique (VEFT; Auer
& Mihalas 1970), which consists of linearizing only the (angle-
averaged) mean intensities, instead of the angle-dependent speci-
fic intensities. The angular dependence of the radiation intensity
then enters the formalism only through the ratios of moments,
called Eddington factors. These factors are calculated before
entering a linearization step, are held fixed during linearization,
and are updated after a completed iteration of complete lineariz-
ation by means of a frequency-by-frequency formal solution of
the radiative transfer equation. This leads to an enormous saving
of computer time, because NN should actually be given as
NN=NF x NA+NL +3, NA being the number of angles. This
means that if NF>NL (a typical case in stellar atmospheric
modeling), and NA =3 (a reasonable minimum acceptable value),
the computer time using VEFT is asymptotically 27 times faster!
Another method of this category is the multi-frequency/multi-
gray algorithm of Anderson (1985, 1987), which uses an analogy
of VEFT by averaging the mean intensity of radiation over
carefully constructed frequency blocks.

The latter way of reducing NN is accomplished by keeping
selected radiative transition rates fixed (Hubeny 1988). These
fixed rates are calculated essentially exactly in the formal solution
step, are held fixed during linearization, and subsequently are
updated in the next formal solution step (their treatment thus
differs from what is usually understood as “fixed” transitions, by
other authors, e.g. Auer et al. 1972, or Carlsson 1986, where the
fixed rates are inherently approximate).

All these methods generally slow down the convergence rate.
It is well known that the pure Newton—Raphson method (i.e.
linearizing with respect to all unknowns) converges quadratically,
if it converges at all. In adopting either technique mentioned
above the quadratic convergence property is destroyed, but the
corresponding increase in number of iterations needed (usually
moderate) is more than outweighed by the dramatic decrease of
computer time per iteration. In the following, we shall refer to
these techniques as the lagging techniques, or simply “lagging”.

2.3. Acceleration by avoiding repeated matrix inversions

There is a whole class of methods of solving a system of non-
linear equations other than the standard Newton—Raphson tech-
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nique. In the context of model stellar atmospheres, one such
method was recently employed by the Kiel group (Hamann et al.
1991; Dreizler & Werner 1991). They used a variant of the
quasi-Newton method (Broyden 1965; Schubert 1970; for a re-
view see, for instance, Wait 1979), which represents a multidimen-
sional extension of the secant method.

Other possibilities, not yet tested in the context of stellar
atmospheres, include the non-linear Jacobi method (replacing the
exact Jacobian by its diagonal), or gradient methods, where the
corrections are obtained by multiplying the residuum vector by
the transposed Jacobian (Wait 1979).

A straightforward modification of the standard Newton—
Raphson method, sometimes called Kantorovich method, is to
keep the Jacobian fixed,

XD = (X)L P(x™), (10)

where X is a fixed value, usually taken as some x®, k <n. In this
case, one calculates the matrix inversion only once, and the fixed
inverse matrix is used in all subsequent iterations. Obviously, if
J(x™) is significantly different from J(X), convergence can be
slow or can fail altogether (see Kantorovich 1949, or Kanto-
rovich & Akilov 1964). A sensible strategy is therefore to first
perform several ordinary Newton—Raphson iterations, and, when
one is already close to a converged solution, switch to the
Kantorovich variant, Eq. (10).

Surprisingly, this method has never been applied to the prob-
lem of stellar atmospheres. A likely reason is that most workers
who have used the complete-linearization method since the time
of its introduction experience ubiquitous convergence problems
even with the standard variant. They might have been reluctant
to try something which may potentially spoil an already very
fragile convergence.

In line with our stated goal, we have tested this method
extensively and have found that it works surprisingly well; see the
following sections. In all cases studied, the Kantorovich method,
when switched on after the second or third iteration of the
standard Newton—-Raphson process, converges essentially as fast
as the original scheme! To avoid misunderstandings, we stress
that we use the term “speed of convergence” in the meaning of the
“convergence rate”. In other words, it indicates how many iter-
ations are needed to achieve a certain accuracy (or how fast the
relative changes decrease with the iteration number), but not the
actual computer time.

This somewhat surprising behavior may be easily under-
stood. As already mentioned, the VEFT and other lagging tech-
niques prevent complete linearization, in the standard variant,
from converging quadratically. This deceleration of convergence
caused by the lagging techniques dominates over the deceleration
attributable to the fixed Jacobian, provided that the fixed Jaco-
bian is not too different from the exact one.

The present method thus appears to be preferable over even
the quasi-Newton methods, because the latter require some cal-
culations for evaluating the updated matrix of the system, while
in the former case the matrix of the system is completely known,
needing only to be read from an external storage device. The
computer time is then completely dominated by the formal solu-
tion step and by the I/O operations needed to read the inverted
Jacobian. Both the I/O operations and the formal solution step
are necessary for any method, including the quasi-Newton ones.
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2.4. Acceleration by using a multi-step iteration
It is well-known from linear algebra that any iterative process
x"FD = F(x™) (11)

may be significantly accelerated by using information not only
from the previous iteration step, but also from still earlier steps.
Such methods are now becoming widely used in the context of
astrophysical radiative transfer theory, mostly for accelerating
the convergence of the so-called accelerated lambda iteration
(ALI) methods, for the most recent reviews; see Auer (1991) and
Hubeny (1992).

The most popular of these methods is the Ng acceleration,
developed by Ng (1974), and first employed in the context of ALI
by Buchler & Auer (1985); a good description of the method can
be found in Olson et al. (1986; hereafter OAB). Although Ng
mentioned that the method may generally be used for a non-
linear operator F, the method has so far been applied, in the
astrophysical context, only to linear systems. Below we present
one possible extension to non-linear systems.

We consider only the three-point version here. The acceler-
ated nth iterate is taken as a linear combination of the three
previous iterates

x*=(1—a—b)x" D4 ax"= D 4 pxn=3) (12)
and, therefokre, assuming that F in Eq. (11) is linear,
F(x*)=(1—a—b)x" 4 ax"~V 4 pxn=2), (13)

The constants a and b are then found by minimizing the quantity
Q=) [x}—F(x})1* W, (14)

where W is a weighting factor, taken, as recommended by OAB,
as W;=1/x{". The detailed expressions for a and b are also
presented by OAB. The iterate x™ is then replaced by the acceler-

ated value
X, =(1—a—b)x™ 4 ax" V4 px~2), (15)

In the case of the Newton-Raphson process, Eq. (5), or the
Kantorovich variant, Eq. (10), the operator F is given by

Fx)=x—J(x)" ' P(x), (16a)
or
Fx)=x—J(X) ' P(x), (16b)

respectively, and is therefore non-linear. Equation (13) is not,
strictly speaking, valid, but one may still use Eq. (15) for an
acceleration. Although we do not have a rigorous mathematical
proof that this procedure works for general sets of non-linear
algebraic equations, nor can we state under which general condi-
tions it works, we found empirically that it indeed works perfectly
with operator F, as given by Eq. (16).

In an actual implementation of the Ng acceleration, one is
essentially free to choose a particular flavor of minimization and
the appropriate weighting factors. We have experimented with
two different approaches. First, we minimize the residuals in all
depths separately, which means letting the quantity Q in Eq. (14),
and therefore the quantities a and b, be depth-dependent. Second,
we apply a global minimization, in which case Eq. (14) may be
written as

ND NN

Q=) Y WE—FW)1P /e,

d=1i=1

(17)

assuming that F(y¥,;) is still (formally) given by Eq. (13). In
actual computations, we proceed as follows: after a completed
Ingth iteration, where Iy, is an input parameter (usually 6, or the
iteration number where the Kantorovich variant was switched
on plus 4), we perform the formal solution. Then, the constants
aand b are evaluated as indicated by Eq. (17), and the accelerated
vector y at each depth is calculated by Eq. (15). We then perform
another formal solution step, and, finally, perform the next line-
arization iteration, i.e. the steps (i)—(iii) of solving Egs. (8) and (9)
(with matrices Ay, By, C4, D, either being recalculated — in the
ordinary variant, or with the appropriate matrices Dy,
(Bs—A4Dy-1)7", and A, being read from the external storage
device — in the Kantorovich variant); see Fig. 1. The second
formal solution step performed after the acceleration is very
important, otherwise one would enter the next iteration of com-
plete linearization with an inconsistent radiation field and level
populations, which would significantly slow down the conver-
gence process or may even lead to divergences.

As expected, the global minimization, Eq. (17), exhibits much
better convergence properties in most cases studied. Therefore,
we adopt Eq. (17) in all the following calculations. Other free
parameters are the iteration number where the accelerated vector
is calculated for the first time, Iy,, and the number of iterations
between successive accelerations, Aly,. The acceleration cannot
be started earlier than in the fourth iteration, but this value is
seldom of any practical use, since the first few iterations always
exhibit large relative changes. We have found that the acceler-
ation process may be safely started between the fifth and the
seventh iteration, and may be repeated each fifth iterations. We
have experimented with other values of Aly,, such as 1 or 2, but
these values generally slowed down the iteration process.

As another practical matter, we did not want to mix iterates
originating in the ordinary Newton—Raphson cycles with those
calculated in the Kantorovich iterations. Therefore, if Ng acceler-
ation was used together with the Kantorovich variant, we started
the Ng acceleration four iterations after the Kantorovich variant
was switched on. In such cases we could probably have started
the Ng acceleration earlier, leading to further savings of com-
puter time, but since the time needed to perform one or two more
Kantorovich iterations would not have been an appreciable
portion of the total time, this was not done.

As we shall show in the next section, the Ng acceleration
introduces an essential improvement in convergence for both the
standard and the Kantorovich versions. However, it is the
synergistic combination of the Kantorovich version and the Ng
acceleration which offers a very attractive method for calculating
model stellar atmospheres.

3. Test cases

In order to test the proposed methods for a wide range of stellar
atmospheric parameters and still keep the number of test cases
reasonably small, we have chosen to calculate models for
three different effective temperatures, T.¢;= 10000, 25000, and
50000 K. In all cases, log g=4, and solar composition was
adopted. These roughly correspond to main-sequence early A, B,
and O stars, respectively. The range of effective temperature
covers nearly the entire range of models where the complete
linearization has been applied. For cooler stars, the NLTE effects
are believed to play a minor role in their photospheres; the main
concern here is a proper treatment of the (LTE) line blanketing.
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Formal Solution Step
after k-th iteration

it mod(k-| g, Al Ng) %0 if mod(k-I Ng, Al Ng) = 0
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Acceleration

Evaluate constants a,b (Eq. 17)

1

Calculate xﬁz)cc) (Eq. 15)

1

Formal Solution Step

iftk<lg itk> g

t Complete-Linearization Step

1

1

recalculate matrices A, B, C, D,
and vectors L, v
(steps iHi - Egs. 8)

read appropriate matrices from disk
(Kantorovich variant)
and evaluate vectors L, v

Fig. 1. A flow-chart diagram of one iter-

ation of the complete-linearization method,
improved by the two acceleration schemes
discussed in the present paper, the Kan-
torovich variant, and the Ng acceleration.

Back-substitution
(step iii -Eq.9)

k denotes the current iteration, Ix is the
iteration where the Kantorovich variant was

if not converged

Models hotter than 50000 K are usually rather easy to calculate
(that is, within the frame of the “classical” model defined above),
and the convergence behavior of the 50000 K model may be
viewed as representative for hotter models as well.

For every effective temperature, the final model was
calculated in the usual sequence LTE-grey model-LTE
model »NLTE/C model (NLTE with continua only)-»NLTE/L
model (NLTE including lines). Table 1 summarizes the basic
properties of the models. The models were calculated for the
purposes of testing their convergence properties only. We avoid-
ed very simplistic models, because their convergence properties
would not necessarily be indicative of the behavior of the more
complex models likely to be used in actual research. On the other
hand, we also avoided very sophisticated models, because they
would have required excessive computer time, worth spending
for purposes of actual spectroscopic diagnostics, but not for our
purposes here. Since we intended to explore the convergence
properties of many different algorithms in detail, we let each
model converge to a much higher accuracy (the maximum rela-
tive change of all quantities at all depths less than 107%) than
needed for any practical purpose.

—_

switched on, I, is the iteration where the Ng
acceleration was performed for the first time,
and Al, is the number of iterations between
two accelerations

Table 1. General characteristics of the model stellar atmo-
spheres: Number of NLTE levels, depth points, lines (total and
linearized) and frequencies (total and linearized)

Model NLTE Levels ND Lines Frequencies

H Her Hemn other tot. (lin.) | tot. (lin.)
T10LT 9 - - - 94 - - 63 (63)
TI1ONC | 9 - - - 94 - - 63 (63)
WIONC | 9 - - -1 94l - - | 1089 (112)
TI10NL 9 - - -1 9| 21 (6) | 255 (138)
WIONL | 9 - - - 94| 21 (6) | 1232(2) (138)
T25NC | 13 14 1 - 70 - - 55 (55)
T25NL | 13 14 1 - 70| 74 (18)| 403 (161)
T50NC | 13 14 14 16| 70 - - 72 (72)
T50NL | 13 14 14 16| 70 [ 159 (12) | 711 (123)

(@) Includes 1007 internal frequency points for NLTE ODFs.

3.1. 50000 K model

The hottest models assume an atomic level structure similar to
models already used before (Hubeny et al. 1991). Departures
from LTE are allowed for first 12 levels of H, 14 levels of He 11, 14
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levels of He 1 (all LS states for n=2 treated as separate levels, and
higher states up to n=8 appropriately averaged; singlet and
triplet states up to n=35 are treated separately). Moreover, we
include a few low-lying states of C 11-C v, N mi-N v, O 1v—O VI
(altogether 16 levels). In addition, we include the effects of wind
blanketing, with an albedo equal to 0.04 in all continua except
the He 11 Lyman continuum, where the albedo is set to 0.8, and in
hydrogen and helium lines where the albedo used is 0.1 (repres-
entative of typical values for an early O star). The effects of
a microturbulent velocity, v, =25km s~ !, are included in the
line broadening as well as in the total pressure (see also Hubeny
et al. 1991). All allowed hydrogen and helium lines are con-
sidered, except the He 11 Lyman lines, for which detailed radiative
balance is assumed. For lines, we assume depth-independent
Doppler profiles.

3.2. 25000 K model

The intermediate-temperature model (7.« =25000 K) considers
only hydrogen and neutral helium (the ionized helium is repres-
ented by a one-level ion). Again, we take 12 and 14 NLTE levels
for H and He 1, respectively, and consider all transitions between
them, except the resonance lines of He 1, which are assumed to be
in detailed radiative balance.

3.3. 10000 K model

Construction of a NLTE model atmosphere for T.;;=10000 K,
even for the simplest pure-hydrogen composition, presents a non-
trivial problem, as the previous history of various attempts at-
tests (Kudritzki 1973; Frandsen 1974; Borsenberger & Gros 1978,;
Hubeny 1981, 1986). We consider two different types of models.
First, an almost “classical” model (similar to the previous studies,
only slightly extended) — 8 NLTE levels of H I plus one level of
H 11, 21 lines between them (all except Lyman lines which are
assumed to be in detailed radiative balance), and Doppler pro-
files for all lines. Second, we also consider much more sophisti-
cated, albeit still pure-hydrogen, models, considering detailed,
Stark + Doppler profiles for all Balmer and higher Lyman lines
(low members of the Lyman series are still considered with
detailed radiative balance) and allowing for the effects of a de-
tailed opacity due to high members of the Lyman and Balmer
series. The latter opacity, treated within the framework of
the generalized occupation probability formalism (Hummer
& Mihalas 1988), is essentially exact. Also, a dissolution of
Rydberg states is treated essentially exactly. The opacity near the
Lyman and Balmer series limits, which is represented by a total
of 1007 internal frequency points, is described through a newly
introduced NLTE opacity distribution functions (ODF), which
enables us to represent this opacity by means of only 30 fre-
quency points in the linearization step. This algorithm takes into
account the effects of higher lines both in radiative equilibrium
(via opacities) and in statistical equilibrium (via modified radi-
ative rates into and out of levels n=1 and n=2). Note that the
usual mark of quality of a model, the number of lines which are
taken into account, here loses its well-defined meaning, since in
this formalism the number of lines depends on depth, via the
dissolution of Rydberg states. A detailed description will be
presented in a forthcoming paper (Hubeny et al. 1992).

3.4. Computational considerations

All calculations reported below were made with the appropri-
ately modified computer program TLUSTY (Hubeny 1988).
A new version, which incorporates the new acceleration algo-
rithms, the NLTE opacity distribution option, and which also is
now better vectorized for the use on Cray computers, is available
from the authors upon request. It is also distributed via the
Collaborative Computer Project No. 7 (CCP7-“Analysis of As-
tronomical Spectra”) computer programs library. The new ver-
sion of TLUSTY was also thoroughly optimized, so that it now
requires, even in the standard variant without any acceleration
discussed in the present paper, about 60-75% of the time needed
to run the same model with the older code (i.e. versions up to
serial number TLUSTY154). On Cray computers, the new ver-
sion now works up to six times faster.

Although we have run the program on various computers
(VAX, Cray YMP), we have decided to calculate the whole set of
models, for the purposes of the present paper, on a DEC
5000/200 workstation (with 25 MHz clock speed, 24 MIPS,
3.7 MFLOPS, 18.5 SPECmark). We believe that the timing com-
parisons based on runs on the workstation are more indicative,
since workstations are becoming more and more widely
available.

4. Results and discussion

Figures 2 and 3 show the convergence properties and the effects
of acceleration algorithms for two models in detail. Figure 2
shows a typical case of “fast convergence” behavior, for the
NLTE/C model with T,=10000K (T10NC). The left side
shows iterations of the ordinary, non-accelerated, complete line-
arization, while the right side displays the convergence history for
the model where the Kantorovich variant was switched on after
the second iteration and the Ng acceleration was performed after
the seventh iteration. The upper panels display the logarithm of
the relative changes in temperature, and the lower panels display
the logarithm of the maximum relative change of all quantities,
both as a function of depth.

This figure illustrates three important features. First, the
convergence of complete linearization, even in the standard vari-
ant, is global and rather fast — about 0.4 dex per iteration. In this
case there are no fixed radiative rates, and the only “lagged”
quantities are the Eddington factors. Second, the relative changes
for the third to sixth iterations are virtually the same in both
cases, which demonstrates that the Kantorovich variant does not
slow down the convergence rate with respect to the standard case.
And, third, the effect of Ng acceleration is rather dramatic. The
total number of iterations to achieve max|dy; o/¥;4/<107°
everywhere dropped from 14 to 8!

Figure 3 displays, in contrast, the most difficult case, an
example of the slowest convergence, model W10NL. From the
total of 1232 frequency points considered in model construction,
the radiation intensity is linearized in only 138 points. In
a straightforward application of complete linearization, the
matrices of the system would be about 10 times larger, which
would increase the computer time by the factor of 1000! In our
algorithm, the lagging slows down the convergence considerably:
the rate of convergence is now about 0.125 dex per iteration,
about three times slower than in the previous, fast-convergent,
model, but the convergence is still uniform and global. (Needless
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Fig. 2. Detailed convergence behavior
of the model TIONC (i.e. the NLTE/C
model with T=10000K). The left
hand panels: standard complete line-
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arization; the right hand panels:
models calculated by the Kantorovich
variant (switched on after the second
iteration), together with the Ng acceler-
ation (performed in the seventh iter-
ation). The upper graphs display
log|dT/T| as a function of depth (taken
as a column mass in g cm ~ 2); the lower
graphs display the maximum relative
changes of all elements of the state vec-
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tor, ¥, as a function of depth. The line
pattern is repeated every 8th iteration;
the upper full line corresponds to the
first iteration, the dotted line to the
second iteration, etc. Notice the global,
almost monotonic convergence. The ef-
fect of Ng acceleration is best seen in
the lower right panel
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to say, the net time-gain with respect to a straightforward line-
arization amounts to a factor of 300 or more, which more than
validates the usefulness of lagging).

The right panel shows the convergence in the case of Kan-
torovich variant, accelerated by the Ng algorithm. Again, the
effect is dramatic. Most importantly, the relative time-gain using
acceleration is much more pronounced in the complicated
models than in simple models, as for instance the one displayed in
Fig. 2. This is precisely the feature which makes the present
acceleration methods very attractive, since more realistic, and
therefore more complicated, models are badly needed to match
the high quality of the present-day spectrophotometric obser-
vations. This example also demonstrates that the Ng acceleration
nicely complements the idea of reducing the size of matrices by
employing the lagging techniques: a decreased rate of conver-
gence due to lagging is compensated by the use of Ng ac-
celeration. But, in addition, the time per iteration using the
Kantorovich variant is now substantially diminished, so that the
final time-gain may be enormous.

-6 -4 -2 0

log depth (mass)

The next set of figures (Figs. 4—7) displays the convergence
and timing properties of various acceleration schemes in a synop-
tic form. In each figure, the lower panel shows the maximum
relative change in temperature as a function of the iteration
number, while the upper panel shows the time consumption on
a DECstation 5000/200. The filled circles at the ends of lines
indicate the total time needed to obtain the final, very accurate
model (max|dy; 4/¥; 4| < 10~ °) in the absence of Ng acceleration,
while the triangles indicate the time to achieve the same accuracy
using the Ng acceleration. The lines representing time consump-
tion for the Ng acceleration cases are almost indistinguishable
from their unaccelerated counterparts, which reflects the fact that
the extra time needed to set up the acceleration parameters — Egs.
(15) and (17) - is negligible.

Figure 4 displays the LTE and NLTE/C models for
T..c=10000 K. Again, the effects of Ng acceleration are clearly
seen. Also, we see that the Kantorovich variant, when switched
on already at the first iteration, converges slower than the ordi-
nary complete linearization (however, the total computer time is

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1992A%26A...262..501H&db_key=AST

FTI992A&A. © 7262 T501H:

508
Models W10ONL

Standard complete linearization

Kantorovich & Ng

LA B A A A A

T T

log(AT/T)
log(AT/T)

—-12

AT BT BT B A

-12

ca L b b by Lo

-8 -6 -4 -2 (¢} -8
log depth (mass)

-8 -4 -2 0
log depth (mass)

log(Relative Amax)
log(Relative Amax)

M PR PR BRI BTGP S L

N
oo d e by b b b
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ard variant than that displayed in
Fig. 2, and the dramatic effect of the Ng
acceleration (performed after the sev-
enth and twelfth iteration; the Kan-
torovich variant was switched on after
the third iteration)
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still much shorter than in the standard case), while if switched on
after the second iteration it converges as fast as the standard
variant.

In the case of LTE and NLTE/C models, the slopes of lines
representing the computer time as a function of iteration number
(upper panel) for ordinary complete linearization and the Kan-
torovich variant are not as different as one might expect. This
reflects the fact that the formal solution step and the I/O opera-
tions consume an appreciable portion of the total time.

Figure 5 again shows the very favorable properties of the
Kantorovich variant and the Ng acceleration for the involved
model (W10NL). The convergence behavior is quite analogous
for hotter models as well, as displayed in Fig. 6 (for NLTE/L
model with T.;=25000K), and Fig. 7 (NLTE/L model with
T.ee=50000 K). As pointed out above, one should be cautious
about switching on the Kantorovich variant too soon. NLTE
models with lines are, so to speak, “more non-linear” than

-6 -4 -2 0
log depth (mass)

NLTE/C or LTE models, and consequently keeping the Jacobian
fixed as soon as the first or second iteration may significantly
slow down the convergence, or even lead to divergences (see
Figs. 5 and 7). The safe, and therefore recommended, strategy is
to fix the Jacobian only after the third iteration. Figure 5 also
shows a very interesting feature: the Ng acceleration is even able
to turn an otherwise divergent iteration process into conver-
gence, as was the case when the Kantorovich variant was
switched on after the second iteration.

The models discussed in the figures were converged to a very
high accuracy, which is usually not required for practical pur-
poses. Therefore, we present, in Tables 2—4, time comparisons for
three different convergence criteria: (i) max|oT,/T,|< 1073
(acceptable only for exploratory model calculations),
(i) max|0y; s/:4l<107 (the recommended criterion), and
(i) max|dy; 4/; 4| <1073, our “high-accuracy” criterion. For
the least stringent criterion, the time-gain using the Kantorovich
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obtain the model of the same accu-
racy using the Ng acceleration. The
full lines, labeled CL, represent the
standard complete linearization;
1 the other lines, labeled Kn, repre-
4 sent the Kantorovich variant,
1 where the Jacobian was held fixed
after the nth iteration. The lower
panel displays the maximum
1 |8T/T| over all depths as a function
< of the iteration number. The vari-
1 ous lines represent the same models
as in the upper panel. The unac-
celerated models exhibit a more or
1 less monotonic decrease of max-
-{  imum relative change with the iter-
1 ation number, while the models
with Ng acceleration show a sud-
den, conspicuous decrease of the
relative change immediately after
the acceleration

Iteration

variant is the smallest; actually, for very simple and fast-conver-
gent models (LTE or NLTE/C models), the Kantorovich variant
may even not be useful at all if switched on too late (e.g., when
switched on after fifth iteration for model TIONC; see Table 2).
However, for the moderately stringent criterion (the middle sec-
tion of Tables 2—4), the Kantorovich variant leads to a time gain
in all models. We stress again that the absolute time gain tends to
be more pronounced for more complex models.

5. Conclusions

We have discussed two means of accelerating the ordinary com-
plete-linearization method. The first is the Kantorovich variant,
which consists of keeping the Jacobi matrix of the system fixed.
The most time-consuming part of the calculations — the inversion
of the Jacobian — is therefore avoided, and the computation time

Iteration

is dominated by the formal solution step and by the I/O opera-
tions needed to store and read the fixed inverted Jacobian. In
machines with a very large internal memory, or for relatively
simple problems, one may keep the whole inverted Jacobian in
memory (we need to store matrices Dy, (By—A4D4—1)" !, and
A, for all depths, which requires of the order of 2 x ND x NN?2
words); this would lead to a further reduction of the computer
time. Application of the Kantorovich variant involves a free,
adjustable parameter, namely the iteration number after which it
is switched on. As a rule of thumb, we found that keeping the
Jacobian fixed after the second iteration for LTE and NLTE/C
models, and after the third iteration for NLTE/L models, repre-
sents the safest option, applicable to all models calculated so far.
Originally, we tested another criterion for switching on the
Kantorovich variant, namely the iteration where the maximum
relative change of all quantities at all depths drops below some
previously selected value (e.g. 5, 20, or 50% etc.). We later found
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Table 2. Convergence properties of models with T,¢ = 10000 K

Kantor. Ng max [6T/T| < 1073 | max [6¢ai/wa;| < 1073 | max [§9a,;/%a] < 1077
start start step | IT tcpy [s] ratio | IT icpy [s] ratio | IT tcpu [s] ratio
Models T10LT
= - - 6 350.7 1.00| 9 520.5 1.00 | 14 806.9 1.00
- 6 5 6 347.2  0.99 7 403.4 078 | 9 517.7 0.64
5 - -1 6 355.4  1.01 9 414.1 0.80 | 14 513.8 0.64
5 9 5 6 357.8 1.02( 9 419.0 0.81 | 10 440.7 0.55
3 - -1 6 265.3 0.76 | 9 324.3 0.62 | 14 424.7 0.53
3 7 5 6 266.7 0.76| 8 310.5 060 8 310.5 0.38
2 - -1 6 218.1 062 8 257.2 0.49 | 13 356.9 0.44
2 6 5 6 223.4  0.64 7 243.1 0.47 | 10 303.9 0.38
1 - - 7 192.5 0.55 | 11 270.9 0.52 | 17 390.2 0.48
1 5 5 6 175.6  0.50 7 195.1 0.37 | 11 277.9 0.34
Models TIONC
- - -1 5 3359 1.00| 9 592.5 1.00 | 14 915.8 1.00
- 6 5 5 3346 1.00 7 471.3 080 8 537.9 0.59
5 - - 5 382.0 1.14| 9 485.8 0.82 | 14 618.1 0.67
5 9 5 5 379.0 1.13 9 489.4 0.83 | 10 517.3 0.56
3 - - 5 287.7 0.86 9 391.4 0.66 | 14 523.6 0.57
3 7 5 5 284.3 0.85 8 371.8 0.63 | 8 371.8 0.41
2 - - 5 2425 0.72] 8 320.6 0.54 { 13 453.0 0.49
2 6 5 5 238.2 0.71 7 297.6 0.50 | 8 325.5 0.36
1 - - 6 220.7 0.66 8 272.7 0.46 | 13 404.6 0.44
1 5 5 6 2248 0.67| 6 224.8 0.38 | 11 362.7 0.40
Models W10NC
- - - 4 1292.3 1.00 7 2144.6 1.00 | 11 3286.7 1.00
- 6 5| 4 1277.2  0.99 7 2143.0 1.00 7 2143.0 0.65
5 - - 4 1398.9 1.08 7 1843.4 0.86 | 11 2120.2 0.65
5 9 5 4 1388.8 1.07 7 1830.1 0.85 | 10 2057.0 0.63
3 - - 4 1156.7  0.90 7 1361.2 0.63 | 11 1639.8 0.50
3 7 5 4 1144.7  0.89 7 1365.5 064 8 1438.5 0.44
2 - - 4 915.7 0.71 7 1120.2 0.52 | 11 1398.6 0.43
2 6 5 4 910.0 0.70 7 1136.5 0.53 7 1136.5 0.35
1 - - 7 909.2 0.70 | 10 1112.1 0.52 | 18 1659.2 0.50
1 5 5| 6 8647 067| 8 9987 047 | 15 1493.2 0.45
Models T1ONL
- - 6 3250.9 1.00 | 13 69714 1.00 | 23 12259.8 1.00
- 6 5 6 32042 099 | 8 4255.7 0.61 | 14 7403.5 0.60
5 - - 6 3015.7 0.93 | 13 3652.2 0.52 | 23 4533.4 0.37
5 9 5 6 2947.0 091 11 3403.0 0.49 | 15 3758.0 0.31
3 - - 7 2151.8 0.66 | 14  2780.0 0.40 | 24 3662.3 0.30
3 7 5 7 2100.7 065| 9 22784 0.33 | 13 2632.5 0.21
2 - - 8 1771.8 0.55 | 14  2306.9 0.33 | 25 3277.3 0.27
2 6 5110 1887.6 0.58 | 13 2154.2 0.31 | 18 2591.4 0.21
Models W10NL
- - 5 2895.2 1.00 | 15  8202.7 1.00 | 31 16666.3 1.00
- 6 5 5 2912.3 1.01 7 40115 049 13 7237.3 0.43
5 - - 5 3110.1 1.07 | 16  4109.4 0.50 | 32 5536.8 0.33
5 9 5 5 3103.6 1.07| 10 3595.2 0.44 | 14 3955.7 0.24
3 - - 5 2133.8 0.74 | 16  3133.3 0.38 | 32 4559.9 0.27
3 7 5 5 2167.7 0.75| 8 2476.5 0.30 | 14 3042.0 0.18

that this criterion was not very useful, since the procedure
worked well even if the maximum change is still around 100%.

The second method is an application of the Ng acceleration.
It may be used either in conjunction with the standard complete
linearization, or with the Kantorovich variant. In both cases, the
Ng acceleration indeed leads to a substantial reduction of the
computer time, but the time-gain is most significant if it is used
along with the Kantorovich variant. Again, the adjustable para-
meters are the iteration number where the acceleration is first
performed, and the number of iterations between two acceler-

ations. We have tested several possibilities, and found that the
best results are obtained with the first parameter equal to 6 (in
the case of standard Newton-Raphson linearization), or the
starting Kantorovich iteration plus 4; and with 5 normal iter-
ations between successive accelerations. These values may not
necessarily represent the optimum choice in all cases; however,
we believe that they are reasonable for most users.

These acceleration schemes also very nicely complement the
idea of fixed rates, or of general lagging techniques, employed
systematically in the previous versions of TLUSTY (Hubeny
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Table 3. Convergence properties of models with T, =25000 K
Kantor. Ng max [6T/T| < 103 | max [6¢a;/¥a ] < 1073 | max [6¥q,/va;| < 107°
start start step | IT tcpy [s] ratio | IT tcpu [s) ratio | IT  tcpu [s) ratio
Models T25NC
- - - 4 3328 1.00| 4 332.8 1.00 | 5 413.5 1.00
- 6 5] 4 3282 099 | 4 328.2 0991 5 408.1 0.99
3 - - 4 308.3 093] 4 308.3 093 | 5 343.5 0.83
3 7 5| 4 3126 094 4 3126 094 | 5 3475 0.84
2 - -1 4 2575 077| 5 289.7 087 8 389.4 0.94
2 6 51 4 259.0 078 | 5 291.1 087 7 374.3 . 0.91
1 - -1 7 3023 091 11 430.3 129 19 688.3 1.66
1 5 5 6 2864 086| 9 383.3 1.15 | 12 499.0 1.21
Models T25NL
- - -1 5 4592.8 1.00 7 6403.4 1.00 | 12 10815.7 1.00
- 6 5| 5 44240 0.96| 7  6211.5 0.97 | 11 9702.4 0.90
5 - -| 5 4651.0 1.01| 7  4888.1 0.76 | 12 5458.7 0.50
5 9 5| 5 46740 1.02| 7  4912.2 0.77 | 12 5522.1 0.51
3 - -| 5 3040.7 0.66 | 7 3276.4 0.51 | 12 3844.0 0.36
3 7 5| 5 30375 0.66| 7 33085 0.52 | 11  3765.8 0.35
2 - 5 7 24759 0.54 | 10 2820.5 0.44 | 13 3152.2 0.29
2 6 5 7 2515.8  0.55 7 25158 0.39 | 12 3111.2 0.29
1 - - 11 2132.5 0.46 | 15  2569.4 0.40 | 23 3446.5 0.32
1 5 5 7 1715.8  0.37 | 11 2197.1 0.34 | 17 2884.1 0.27

511

Fig. 5. The same as in Fig. 4, but
for models WIONL. Notice the di-
vergence in the case when the Jaco-
bian is held fixed too early. The
crosses in the upper panel indicate
the iteration where the correspond-
ing model has diverged
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Table 4. Convergence properties of models with T, =50000 K

Kantor. Ng max [6T/T| < 1073 | max [6¢q;/%a;] < 1073 | max [6¢q;i/va] < 107°

start start step | IT tcpy [s] ratio | IT tcpu [s] ratio | IT tcpu [s] ratio
Models TSONC

- - - 5 1510.2 1.00 5 1510.2 1.00 7 2089.6 1.00

- 6 5 5 1501.6 0.99 5 1501.6 0.99 7 2133.7 1.02

5 - - 5 1625.0 1.08 5 1625.0 1.08 7 1811.2 0.87

5 9 5 5 1579.1  1.05 5 1579.1 1.05 7 1762.5 0.84

3 - - 5 1159.6  0.77 6 1248.1 0.83 9 1518.7 0.73

3 7 5 5 1157.7  0.77 6 1246.0 0.83 8 1479.9 0.71

2 - - 4 869.8 0.58 | 17 2025.7 1.34 | 33 3455.3 1.65

2 6 5 4 848.7 0.56 | 12 1654.3 1.10 | 14 1836.7 0.88
Models T50NL

- - - 8 6382.6 1.00 | 14 11019.7 1.00 | 21 16421.0 1.00

- 6 5 7 5666.4 0.89 | 12 9604.9 0.87 | 17 13523.2 0.82

5 - - 8 4655.3 0.73 | 13 5325.1 0.48 | 20 6251.0 0.38

5 9 5 8 4685.5 0.73 | 13 5433.0 049 | 15 5762.6 0.35

3 - - 8 3322.5 0.52| 13 3994.2 0.36 | 19 4787.1 0.29

3 7 5 8 3397.8 0.53 | 12 3993.9 0.36 | 15 4394.1 0.27
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1988). With extensive use of lagged quantities, previous versions
of the code would eventually converge, but at much slower rates.
(Indeed, if there were too many fixed transitions, or if one uses the
fixed rate option for strong resonance lines, the lagging behaves
similarly as the ordinary Lambda iteration). However, even with
the Kantorovich variant alone, the lagging, even if extensive,
becomes useful again since the Kantorovich variant reduces the
time per iteration significantly, while keeping the convergence
rate unchanged. One may therefore easily afford many iterations,
say 30 or even more. Applying the Ng acceleration will further
reduce the absolute time, and moreover will prevent possible
stabilization of the solution before achieving true convergence.

Finally, an important feature of the present acceleration algo-
rithms is that they are applicable within the whole range of stellar
atmospheric models calculated with complete linearization.
Therefore, they offer universal, easy-to-use, and robust method
for calculating NLTE model atmospheres of hot stars. A model
which most sceptics would judge to be too involved for a reason-

able application of complete linearization, for instance one with
60 levels and 160 lines taken fully into account in NLTE, may
now be calculated to a sufficient accuracy in less than 70 min (the
NLTE/L step only; about 2 h if calculated from scratch) on
a modern workstation.
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